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L(myn) is the set of integer m-tuples (l;,...,{) with

R. Stanley conjectured that L(m,n) is a symmetric chain order for

all (myn) . We verify this by construction for m= L . bz




A Symmetric Chain Decomposition of L(k,n)
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Abstract.
L(m,n) is the set of integer m-tuples (ﬁ"“"m) with

OSalg...SamSn, ordered by a <b when a1_<_b for all 1 .

i
R. Stanley conjectured that L(m,n) is a symmetric chain order for

all (myn) . We verify this by construction for m= 4 ,
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L(myn) is defined as the lattice formed by order ideals in the
direct product of two chains with m and n elements, respectively.
Equivalently, it is the collection of integer sequences ga = (al,...,am)

satisfying O < al € see < a < n, with ordering a< E when a, <D

i i
for all i . The correspondence is simple, If the chain elements are

Xy Rl X, and ¥y C e £ Yy ? then the number of elements paired

with X, in the ideal corresponding to a is n-a In other words, the

i .
antichain generating the ideal is {(xl’yn-a ),...,(xm,yn_a 33 4
1 m

Clearly, the rank of element a is Zfai , the rank of the entire
(mn)

lattice is mn , and the cardinality of the lattice is g 2

For

-
any element a , we define its conjugate a = (n~am,...,n-al) . Note

ST 5{{; B Q%‘; 4

that Q.' = a . The ranks of an element and its conjugate sum ¢t mn ,
so the sizes of the ranks are symmetric about the middle. Using complex
algebraic methods, R. Stanley (3] proved the sizes of the ranks are also

unimodal. Thesge are necessary conditions for a stronger property he

- '%‘f“?‘“&"“ﬁ- M PRI s

conjectured also holds. He conjectured that L(myn) is a symmetric
chain order. A symmetric chain order is one whose elements can be
partitioned into chains which are saturated (skip no ranks) and symmetric
about the middle rank. The conjecture is clear when m=1 or m= 2 .
Lindstrém [2] provided an inductive construction to verify it for m = -
Here we give a construction somewhat different from his which verifies

the conjecture when m= L .

Let S(m,n) , the "shell” of L(myn) , be those elements which begin
with O or end with n . When these are removed from L(m,n) the
remainder is isomorphic to L(m,n-2) . The conjecture holds trivially
when n =1, and L(m;0) can be defined as having a single element.




S0, providing a symmetric chain decomposition of S(m,n) proves the
conjecture by induction. We use this approach here for L(L,n) .
Unfortunately, when m is odd and n is even the rank sizes in S(m,n)
are not unimodal. 8o, for that case Lindstrtm was forced to strip off
two shells for his induction. For m = 4 this difficulty does not
arise. It is possible that Lindstrlm's construction generalizes for
odd m and this does so for even m . When m and n both exceed
L(myn) is not an LYM-order, so Griggs' sufficient conditions for a

symmetric chain order [1] cannot be applied.

Theorem. L{k,n) is a symmetric chain order.

It suffices to give a symmetric chain decomposition of 8(k,n) .
The chains will be of two types, CiJ and Did for suitable values
of i and Jj . The chains are clearly saturated, so two steps will

camplete the proof.

(1) No element appears in more than one chain.

(2) The number of elements in the construction is the size of S(m,n) .

Each chain is composed of six segments, with the top element of
one segment and the bottom element of the next identical. Throughout
a given segment only one position in the integer sequence changes.
Table 1 explicitly defines the chains and gives the ranks where the
changes between segments occur.

Segments must have length at least O . That is, top and bottom
elements may be identical, but the top element must not have rank below

the bottom element. Examining the lengths of segments and ensuring that
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we have legal elements at the bottam of C1 j and the top of Di 3
yields necessary conditions on i and J . We claim the desired
decomposition is obtained by taking all chains for which these necegsary

conditions are satisfied.

s(%n) = {C;y: 33%2) <0, 120, > 0}u(Dyy: 34425 S 03,4 20,5 >0} .

Figure 1 gives 8S(4,7) explicitly as an example,

Figure 1. 5(4,7)
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Qutline of Proof. To show the elements are all distinct, we express

the D -chains in terms of the C -chains and then restrict our

attention to the C -chains. Let C;J be the element of CiJ of rank r ,
r

similarly for D1 g * We claim that chain D1 33 is the conjugate of
’3-

chain Ci j when the top and bottoms elements of the latter are removed.
»
» -
That is, (Di j l) = climdr . It suffices to perform the conjugation on
IS 2
the transition elements between segments of Di £1* They become the
s 3=

transition elements of Ci 3" Note the top and bottom elements of C
b

i,J
are unaffected and are conjugates of each other. Whenever Di -1 exists,
» 3=
Ci* exists., The affected Cij are those where j > 0 and 3i+2j < n .,

Distinctness now reduces to showing:

(la) The elements of {CU} are all distinct.
) a
(1b) The chains o and Ci, (n-31)/2 are self-conjugate.
(le) There are no conjugate pairs among the elements of U {Ci.j] ’
where 0 < j < (n-3i)/2 , other than the tops and bottoms of

chains.

(1b) is seen immediately by conjugating the transition elements in those

chains. The other two statements require eliminating a large number of

easy cases.,
To show we have the correct number of elements, we proceed by
induction. Simple counting verifies it for small n . In general, the

size of S(myn) is |L(mn)|~ |L(mn-2)| . So,

|5(4sn)| = (“I")-(“{e) i M&*f.).@n_*}l !

This is the sum of a familiar sequence. Indeed,

|s(byn) | = |S(4,n-1)| = (a+1)® .




L S

Now we examine the changee in the construction between n-1 and n .

ij or D.t:] exists in the

construction for n-l , a similarly indexed chain exists in the construction

For all values of i and J such that C

for n ., Subtracting ranks, the number of elements in C is

iJ

L(n-3i-j)+1 , and the number in Dij is L4(n-3i-j)-5 . Each of these

chains has L more elements than the similarly indexed chain in S(k,n-1) ,

if that chain exists. We will see there is a C for every element of

i

the middle rank which begins with O and a D

13 for every such element

whose first position is not zero.
The chains which arise newly when n is reached are those CiJ for

which 3i+2j = n and those Di for which 3i+2j = n-3 . For each value

J
of i fram O wpto |n/3)] or |n/3 -1, depending on parities, there

will be one new C or Di,j » but not both.

id
Verifying that the construction picks up the proper number of elements

reduces to:

(2a) Computing (and multaplying by L ) the mumber of chains in the
construction for §8(4,n-1) -- that is, the sum of the number
of solutions toc 3i+2J < n-1 and 3i+2j < n-4 ,

(2b) Computing the total number of elements in new chains.

(2¢) Verifying the sum of new elements in (2a) and (2b) is (n+1)2 A

(2b) breaks into cases depending on the parity of n , and (2a) does the
same with the parity of Ln/5_| » 80 (2¢) requires six cases, depending

on the congruence class of n modulo 6 .

Details of Step 1. If (la) does not hold, suppose a = Cy, = Cy . We

have a mumber of cases to consider, depending on which segment contains a




in each of the two chains., Let pci j denote segment p in C, .

Equating the descriptions of the segments in Table 1 give us a number
of linear relationships between i, j, k, and ¢ . If a comes
from pCi‘j and pC“ » equating the positions which do not change in
that segment implies i =k and Jj = f in all six cases, by straight-
forward subtraction of equalities.

By symmetry we may assume a occurs in a lower numbered segment
in Cij than in Ckl . We allow the transition elements betwee)1 segments
to belong to either segment. So, if a is in pci,j and qck’ y We may

assume a 1s not the top element of P C nor the bottom element of

i
: q'c.“ » else we have a case with smaller g-p . In particular, the
rank of the top element in pci;} must be etrictly greater than the
rank of the bottom element in qul .

Suppose q = ptl . This comparison of ranks yields a strict

S R B I I AT

inequality when a particular linear function is applied to (i,j) and

S A N,

to (k,t) . whenever q = ptl two positions in the elements remain
constant from the bottom of segment p to the top of segment q . This
expresses two positions of a as identical linear functions of (4,J)

and (k,7) . In all five cases, we readily get the same linear function

we obtained by considering ranks, but with equality this time.
i If the first position of a is nonzero, a can occur only in
: segments 5 or 6 . If it is zero, a occurs in segment L or below.

This eliminates all but three of the cases which might have c;‘ s = c;l

with (i,J) # (k,2) . The remainder we handle individually.

2

L
If a 1is in ciJ and Cn,poaitions 2 and 3 require

i = n-2k-f and n-i-j > n-k-f . Adding these gives n-j > 2n-3k-2¢ >n.




Next suppose a 1is in 3

3
CL1 and ckl . Equality of the last three

positions requires k < i, n-k-f = 2i+j, and n-t > 3i+j . OSubstituting

for k and n-f in the equation gives 2i+j < 2i+j . Finally, suppose a

is in lciJ and "ckl . Comparing the top of 1013 with the bottom of

hckl yields n+3i > 3n-3k-3f > n+3k+f or i >k . On the other hand,

the middle two positions of a remain constant in both sections, so
i = n-2k-¢ and 2i+J = n-k-f . OSubtraction gives i+j=k or 1i<k.

(le) also breaks into cases depending on the segments. We assume

hn-r)'
Kkt

Here the arguments do not group together as cleanly. One element of such

r
a= CiJ'(C

» with 0 < j < (n-31)/2 and O < t < (n-3k)/2 .

a conjugate pair occurs at least as high as the middle rank in one chain.

Call this chain Ci For ease of comparison, we have recorded C and g

B i
C):l in Table 2. Since 3n-3i-3j <2n, a lies in segment 4, 5,06
of C

-

ki

iy Since n+3k+22 <2n, & lies in segment 3 , L, 5, or 6 of

C,, » Assume ac (pcijnqckl) .
we first notice p = 4 is impossible, as it would imply £ <0 . We
handle the remaining cases individually. Again we equate corresponding
positions in a . The requirements on j and ( figure prominently.

For example, i+j <k and i > k+! give us a contradiction, as do

n-3i-j <t and n-3k-1 Sd

p-G,q-é. &25214'3-21("‘1- Saisk. alaji‘dzbk"‘lo

Subtracting a, implies i >k . S0 (i,J) = (k,2) , and this is the

case where the top and bottom of the chain are conjugate.

p=eS, qud . 15:1'*;]-1:. a2n21+;]22k+l. Subtracting
33 implies i > k+¢ .

p=6,q=5. '3“1‘21- slsn-ji-J-l. Substituting for

i gives n-3k-f < j . As mentioned curlier, this is a contradiction since

both 3i+2j and 3k+2! must be less than n .
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P=5,am=6. a = #Jm=k. a = 21+) = 2k¢s . Subtracting

51@1108 i-k"l,SOJ-IUO-

p=b, qub, & = n-%i-j = 1 . a8, = n-2i-j = k+f . Subtracting
N gives 1 = k , BSubstituting in 8, yields n-3k-1 = j , giving the

same contradiction as in (p,q) = (6,5) .

P=5,q=b, s Wi n-3i-3 > 1 (equality returns us to the previous

case), &, » n-2i-j = k+? ., Subtracting & gives i <k,

33 » n-i-3 > 2k+! . Subtracting a, glves 1 >k,

p=6, q= 3. Llest p-q be smaller, the requirement on ranks is

kn-31-3§ < n+3k¢31 , s0 n-2i-J < k*1 . But a, = n-2i-j = k+1 .,

P=5,q=3, a,,an-?i-J-k*l.a.,s-n-i-J-Ekﬂ.
Subtracting a yields i « k . GSubstituting this in the two previous

equations gives the familiar contradiction n-3%i-j e« ! and n-3k-f = j .
This completes the proof of (1).

Details of Step 2. We begin with (Pa). The top element of segment L

in Ci.} has rank 3n-3i-2j > 2n , so every (:1‘1 has a O 4in the first
position of its middle rank element. The bottom rank of segment 3 in
Did is n*31+2§+2 < 2n-1 , s0 Di,j has a positive first position in

its middle rank element., The non-decreasing sequences of length 4 which
start with O, end in k, and sun to 2n run from (0, 2n-2k, k, k) to
(0, L (en-k)/2] , [(2n-k)/27 , k) when n >k > [2n/37 . S0, we want the

number of C,,'s to be z kK- (2n-k)/2741 . similarly,
J ren/37 <k<n

's run from (k, k, n-2k, n) to

the elements covered by Di 3
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(k, L (n-k)/2) , [(n-k)/27,n) for 1<k< |n/3), for a total of

z L(n-k)/2) -k+1.
1sk< | n/3)

On the other hand, the number of solutions to 3i+2j < n is

b 1+ | (n-31)/2] and to 3i+2j < n-3 is
0sign/3y

b N 1+ | (n-31-3)/2) . These turn into the desired
0<ig|n/3)-1 :

suwmations when 1 is set to n-k in the first case and k-1 in
the second.

We wish to cambine the summations. Separating the i = 0 tem
from the first and adjusting the index in the second, the total number

£(n) of chains becomes

f(n) = 1+ | n/2) +2 p X (1 + L(n=31)/2)) .
1<ign/3)
To compute the surmation, we pair terms for consecutive values of 1 .,
I1f | n/3] 1is odd, we separate i « |n/3) . Adding the terms for
i =2k-l and i = 2k gives 2+ | (n-6k+3)/2 | + | (n-6k)/2 | = n+3-6k .

There are | n/6] pairs altogether, and ; (n+3-6k) =
1<x< (0/6)

(n*3) n/6) -3 n/6) | (n*6)/6) . when |n/3) is odd, the term
1+ | (n=3|n/3))/2] remains. Thisis 1 if n =3, % mod 6 , dbut
2 if ns5mod6.
Sumarizing, if n=rmd 6, 0<r <5, then the total mmber

of chains is
i 3 ral3l;8R
f(n) = |n/2j+2(n*3) n/6) -6 n/6) (n+6)/6)+( 3 ; re3,h
2 3 ¥8)d

2 3 PuQd,,R
= |n/2)+ (n*3)(n-r)/3 = (n=r)(n-r+6)/6+4{( 3 ; r=3,4




Next we consider (2b). If n is even, a new chain C

for even values of i with 0<i< |n/5), and a new D

occurs

1

i3 for odd

values of i with 1<i < |n/3)-1. gimilarly, when n is odd we

have a new Di

for even i with 1<i < |n/3)-1 and a new C

iJ

forodd i with 1<i< (n/3] .

To sum the number of elements in these chains, we can again pair

consecutive terms,

have

gn) = (

For the total number g(n) of these elements, we

1%, /2l & oy, (nebkyzel * 1Cox, (nebiy /2! } 8 even

1<k< | n/6}

0<k< L%n-5)/6J |D2k; (n~6k-3)/2l . ‘Cghl’ (n-6k-})/2| 3 noodd

Since ‘Cid‘ = 4(n-3i-3)+1 and |Di.1' = k(n-3i-3)-5 , this quickly becomes

g(n) = {

X L(n-6k)+ 8 ; n even
1<k< | n/6]

z 4 (n-6k)-k ; n odd
0<kg | (n-3)/6

1+2n+4(m2) n/6) <12 n/6 )| (n+6)/6 ; n even
U(n-1) L (n-3)/6] -22 (n=3)/6§ | (n+3)/6 ) ; nodd

1+2n+2(n*2)(n-r)/3 - (n-r){n-r+6)/3 ; re0,2,%4
2(n-1)(n-r+6)/3 = (n-r) (n-r+6)/3 3} T=3,5

2(n-1)/3 « (n-7)(n-1)/3 ; rel




iy
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For (2¢), we need only compute Lf(n-1l)+ g(n) , which becomes
simple algebraic manipulation when we consider a particular congruence
class of n modulo 6 . Beginning with r = 1 , we easily obtain

expressions like

r=1: L+ (n-1)(n+3) r=54: Lkn+9+ (n+2)(n-k%)
r=2: 2n+5+ (n-2)(n+2) ra=5: 2n+10+ (n-5)(n+5)/3+2(n-1)(n+l)/3
r=3: L+ (n-1)(n*3) r=0: Ln+17+2(n-6)(n+4)/3 +n(n-2)/3

all of which reduce to (n+1)2 .

This completes the proof.
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